Решены ли сомнения Эйнштейна экспериментом эффекта квантовой запутанности?

Физики поставили эксперимент, который может служить доказательством существования эффекта квантовой запутанности. Вопрос смущал многих физиков прошлого века, включая Альберта Эйнштейна, и был предметом споров. Для эксперимента построили 30 метров вакуумной трубы с криогенным охлаждением, чтобы фотон как можно дольше летел от одной запутанной частицы к другой и не успел вмешаться в измерения.

Решены ли сомнения Эйнштейна экспериментом эффекта квантовой запутанности?

Эйнштейн не мог смириться с мыслью, что квантово запутанные частицы мгновенно влияют друг на друга на условно бесконечных расстояниях. В таком случае они должны «передавать информацию» быстрее скорости света.

По его мнению, мы просто не всё знаем о квантовой физике, и могут быть какие-то скрытые параметры, которые уже содержатся в характеристиках частицы и выдаются в ответ на измерение свойств одной из запутанных частиц.

Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго (оно будет противоположным по направлению) становится известна мгновенно, где бы этот второй фотон из пары не находился.

Это также называют эффектом квантовой телепортации.

Решены ли сомнения Эйнштейна экспериментом эффекта квантовой запутанности? Устройство 30-м трубы из эксперимента с волноводом посередине (ETH Zurich/Daniel Winkler)

 

Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер (за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год). В классической системе (нашем с вами мире) неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются.

Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их. В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света.

Решены ли сомнения Эйнштейна экспериментом эффекта квантовой запутанности?
Здесь тестовый эксперимент Белла включает запутанные кубиты. (Storz et al., Nature, 2023)

 

Учёные из Швейцарской высшей технической школы Цюриха (ETH Zurich) создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц. По 30-м трубе в вакууме с охлаждением до -273°C микроволновый фотон пролетает с одного конца в другой за 110 нс.

Измерения длились на несколько наносекунд быстрее. Никакая информация по классическим законам не могла передаться за это время, тогда как эффект квантовой запутанности частиц себя полностью проявил.

До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией.

«В нашей машине 1,3 [тонны] меди и 14 000 винтов, а также огромное количество знаний по физике и инженерных ноу-хау», — сказал квантовый физик из ETH Zurich Андреас Валлрафф (Andreas Wallraff).

У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами.

В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов.

В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики.

Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых (сверхчувствительных) материй, как элементарные частицы.

В этом скрыт небывалый потенциал, который учёные намерены разрабатывать дальше.

  • avatar
  • .
  • 0

Больше в разделе

0 комментариев

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.